Background: Myocardial expression of connective tissue growth factor (CTGF) is dramatically induced in heart failure (HF) of diverse etiologies. However, the physiologic and pathophysiologic roles of myocardial CTGF remain unresolved.

Methods and Results: To elucidate the actions of myocardial CTGF and its putative role in HF, transgenic mice with cardiac-restricted (α-MHC promoter) overexpression of CTGF were generated. Transgenic CTGF (Tg-CTGF) mice had slightly lower cardiac mass than that of non-transgenic littermate controls (NLC) (heart weight/tibia length of 4 months old male Tg-CTGF vs. NLC; 58.9±2.7 vs. 68.1±1.2 mg/cm, p<0.05). Consistently, echocardiography revealed slightly smaller left ventricular (LV) dimensions in Tg-CTGF vs. NLC mice. Simultaneous in vivo LV pressure-volume analysis did not disclose significant alterations of contractility and cardiac output, nor evidence of restrictive left ventricular dysfunction in Tg-CTGF vs. NLC mice. Analysis of myocardial gene expression by real-time qPCR revealed increased expression of antihypertrophic TGF-β2 and GDF-15 mRNA, and decreased expression of EGF mRNA in Tg-CTGF vs. NLC mice. Also, increased myocardial expression of ER stress response genes and scavengers of free oxygen radical were detected. Tg-CTGF and NLC mice were subsequently subjected to chronic pressure overload by abdominal aortic banding (AB) or sham-operation (SH). Four weeks after AB, significant elevations of cardiac mass were observed both in Tg-CTGF-AB and NLC-AB mice. However, cardiac hypertrophy was significantly diminished in Tg-CTGF-AB versus NLC-AB. Simultaneous PV-analysis provided evidence of cardiac dysfunction in NLC-AB mice, i.e. significantly increased LVEDD, LVEDP, and decreased stroke volume and cardiac output compared to NLC-SH mice. Strikingly, Tg-CTGF-AB revealed essentially preserved LV pressure-volume relations. Elevations of myocardial BNP mRNA levels were significantly attenuated in Tg-CTGF-AB compared to NLC-AB mice.

Conclusion: Myocardial CTGF exerts antihypertrophic effects and preserves left ventricular function due to pressure overload and delays onset of HF.